2/11/2023

2/11/2023

Introduction Ecology = oikology (Oikos + logos) Coined by - Ernst Haeckel (a German zoologist) Ecology means the study of the house or the habitat of an organism, a living animal or plant.

2/11/2023

Biotic factors

Autotrophs

- Produces organic compounds on its
 own
- Food *chemical energy*
- Production needs
 - Carbon source
 - Energy

Н	eterotrophs
•	An organism that obtain carbon for its growth
	and development from other organic substrates
	Eg: Fungi, Some bacteria, Animals
	(Herbivorous, Carnivorous, Omnivorous)
D	ecomposers
•	Organisms that break down organic materials
	to gain nutrition and energy
•	They release raw nutrients into the
	environment after breaking down Eg:
	Bacterias, Fungi (not virus!!!)

Abiotic factors

Light

- Light energy (Sunlight) primary source of energy to all ecosystems
- Used by green plants during photosynthesis
- Factors playing important role
 - Quality of light
 - Intensity of light
 - Length of light period

Т	emperature
•	Contributes to erosion & creation of soil
•	Different organisms have different
	cellular tolerances for cold and heat
V	Vater
•	Important component in erosion &
	generation of soils
•	Terrestrial and freshwater environments
	require animals and plants to conserve
	water and evolve ways to maintain
	water/salt balance.

Atmospheric gases
Most important gases used by plants and
animals
– <i>Oxygen</i> (respiration)
- CO ₂ (Photosynthesis – plants)
– Nitrogen (Lightning and Bacteria – plant
nutrition)
Soil
Physical, Chemical and Biological properties
Physiographic factors
Altitude, Latitude, Slope, Aspect etc.,

POPULATION ECOLOGY

Population Ecology Branch of ecology that studies the structure and dynamics of population Population – smallest unit of ecological analysis Population – "a group of interbreeding and interactive individuals of the same species inhabiting the same area at a given point of time"

Introduction
 Ecological community Assemblage of species populations that has potential of interaction Definition (<i>Putman 1994</i>). "interactive assemblage of species occurring
together within a particular geographical area, a set of species whose ecological function and dynamics are in some way interdependent"

Species A	Species B	Name of Interaction
+	+	Mutualism
-	-	Competition
+	-	Predation
+	-	Parasitism
+	0	Commensalism
-	0	Amensalism

Ecological Niche

- It is the *multi-dimensional ecological profile* of a species in a community covering all the measurable aspects of its ecological activities
- It is a term describing the relational position of a species or population in an ecosystem.
- Includes how a population responds to the abundance of its resources and enemies and how it affects those same factors.

Principle of competitive exclusion

- Two different species can have partially overlapping niche in the same community
- But never totally overlapping
- In case of total overlap one species will be eliminated from the community
- This is called the *principle of competitive exclusion*

Climax

- If the succession is allowed to progress without disturbance, a stage is reached when no more improvement is possible in the soil and the vegetation.
- At that stage the vegetation is in equilibrium with the environment and stays unchanged indefinitely by reproducing itself.
- Thus, climax is the culmination stage in plant succession for a given environment.